

STUDIO LEADER/ DAGMAR REINHARDT
YEAR COORDINATOR/ PROF. TOM HENEGHAN

BARR, EXPERIMENTS ON TOPOLOGY

D'ARCY THOMPSON, ON GROWTH AND FORM

From follows function. Form is design. Form is beauty. What is form? Under which restrictions is form generated? Do we still need the grid? What happens when other than numerical restrictions define the space, such as information systems? What happens to form within a system of overlapping activities at the intersection of work/ domestic life?

Throughout the development of architectonics, the production of form has been based on the contemporary understanding of geometry. At the same time, the perception of space as determined by the techniques of visualisation and its mathematics of construction depicted in each epoch's art/ culture had a strong influence on exactly this geometry - a predetermination of space perception through the training of the eye and shaped the information presented. The cultural shift from the central perspective to photography to film has found its equivalent of form understanding in each epoch's geometry, integrating time as a relevant additional condition to the original $x-y-z$ axis, thus leaving the metrical space.

The (IN)FORMRESEARCH STUDIO will review these phenomena of 'geometry history' -from Palladian symmetry via the Cartesian grid to the Corbusian Plan Libre - to investigate alternative forms of geometry:

With the integration of time as a 4-dimensional factor and the acknowledgement of parallel realities as offered by digital information systems, a series of form generating methods have emerged. The Anamorphical Plan, Growth and Form Interdependencies as described by D'Arcy Thompson, the Fluctuating Plan, grid-independent geometries such as the Moebius Strip and the Klein Bottle, and Form-generating processes such as surface bifurcations systems, combined geometry strategies and multiples organization patterns are to name but a few.

INFORM RESEARCH STUDIO UNITS OF APPROACH

01 CONTEMPORARY ARCH GEOMETRIES
U2 DEVELOPMENT OF
SURFACE STRATEGIES/ RULES U3 ADAPTION TO PROGRAM

LE CORBUSIER
DOMINO HOUSE

ORTHOGONAL VOLUME FOLD
1- SURFACE/ OPPOSING
REGULAR TRIANGULATION
TRIANGULATED VOLUME FOLD
MULTIPLE PATTERN

STRATEGIES

The way in which the (IN)FORMRESEARCH STUDIO will engage in form definition and form generating processes is relatively simple: We will construct, reconstruct and transform a series of models, which build up the body of studio research, based on an abstract incorporation of the modernist fever/ Le Cruiser's Domino House. The five points, which generated the original design, will be the points of departure to this exercise: for a hyperstrenghened, deformed, re-installed, adapted, morphed, varied or abandoned solution of a surface.

The production of a large number of physical models (and 3D computational equivalents) will start with a generative with shared characteristics (same material/ various forms) and lead to a moment when the material aspects will condition the result. In respect to the short time given, you will be asked to team up in 4 groups as a joined work force, researching under one headline, but with individual responsibility. Each group will start from one set of rules, and each of its member's will develop his/her own deviation from the original setup, thus exploring an alternate result through subtle change of parameters. In numbers: each one of you will have produced approx. 5-10 models by the end, both rules and models will be documented as a process and presented as team result. Each step will be discussed in the studio, and ideally the whole studio should profit from one single person's product.

CHOICE OF HEADLINE:

Among a variety of geometrical approaches such as Box Deformation, Surface Bifurcation, Combined Geometries/ Spline/ Box and Multiple Organisations/3D Patterning/Space Nodes, the (IN)FORMRESEARCH STUDIO has decided to work with the FOLD and its varieties, ranging from Multiple Pattern Triangulation to the Structural Fold.

CURVED SURFACE 2 SURFACES CONTINUUM/ HORIZONTAL

PATTERN FOLD
DISTORTED RECTANGLE REPETITION

ORTHOGONAL SURFACE FOLD/ TWIST

 FORM VS VOLUME

RS- A 1.1
ENCLOSED SURFACE

RS- A 1.2

RS- B 1.1
1 FOLDED SURFACE

RS- B 1.2

> one surface generates the complete envelope, including circulation spaces

SR B 1.2

SR C 1.1

1 ABSTRACTED FULU 0 working plane> 12×18

1 surface is an abstraction/ extension of surrounding plane 2 surface is bifurcated into 2 non-similar strands

3 strands are folded to form 2 volumes on 3 levels (footage, level1, level2)

4 resulting volumes are positioned in opposing directions

$>$ resulting volumes are positioned in opposing directions

ORTHOGONAL VOLUME FOLD 2
1-3 SURFACE/ OPPOSING/ OPERATING

NK- A 1.1
HOUSE IN HOUSE

NK- B 1.1
TWISTED HOLD

NK- B 1.2

STRUCTURAL FOLD PLUS
SORTS OF HOLD

NK- C 1.1
DIAGONAL HOLD

NK- D 1.1
DISGUISED HOLD

NK- D 1.2

NK- E 1.1
DISGUISED HOLD 2

NK- D 1.3

STRUCTURAL FOLD PLUS SURFACE HOLD

NK-E 1.2

GS-B 1.1
CONTINUITY
GS-B 1.2

CURVED SURFACE
2 SURFACES CONTINUUM/ HORIZONTAL

1 CURVED FOLD
 0 working plane $=12 \times 18$

1 first surface is cut according to implied curvature plus extension

2 second surface is cut according to implied curvature
3 both of them form 1 continuos plane on 2 levels

NP- D 1.1
MULTIPLE RIBBON

NP- D 1.3
MULTIPLE RIBBON

NP-C 1.1
COLUMN/SURFACE

NP-C 1.2
COLUMN/SURFACE

STRUCTURAL FOLD 2 SURFACE BEND FORCES
> surface as self-inflicted structural device:
1 piece folded back to carry the total

HL-B 1.1
SURF SPLIT/ RIBBON

HL- B 1.2

HL- B 1.3

GALLERY SPACE
(continuous path/exhibit: video projections)
> multiple ribbon organisation forming
spatial pockets/ continuous fluidity

HL- B 1.1
SECTION

NP-I 1.1
BIFURCATION as a circulation core

STRUCTURAL FOLD 3 SURFACE COMBINED FORCES

STRUCTURAL CIRCULATION CORE
>3 the surface bifurcation/void formed works

PARTIAL VOLUME FOLD

 SURFACE STRIPS BEND1 SURFACE FOLD/ TWIST
0 working plane $=12 \times 18$
1 three surface cut into an equal stripe pattern
2 of each surface, half of the material (stripes) is folded to meet the next one, direction of fold: orthogonal system

3 two of the surfaces form 2 exterior facades: at this point, the folding down/up is orthogonal, but refined with a twist applied, direction: chance system.

PARTIAL VOLUME FOLD SURFACE STRIPS BEND

1 SURFACE FOLD/ TWIST
0 working plane $=12 \times 18$
1 three surface cut into an equal stripe pattern
2 of each surface, half of the material (stripes) is folded to meet the next one, direction of fold: orthogonal system

3 two of the surfaces form 2 exterior facades: at this point, the folding down/up is orthogonal, but refined with a twist applied, direction: chance system.

VD- B 1.1
SECTION

[^0]

BH-D 1.1
VOLUME

BH-C 1.3

BH-C 1.1 SURFACE DIVISION

BH- C 1.4

BH-C 1.2

PARTIAL VOLUME FOLD
SURFACE STRIPS BEND
> stripes are bend into 2 directions to form one volume/ blurr distinctions between horizontal/ vertical

BH-B 1.1
VOLUME STRIATED

1 PARTIAL VOLUME FOLD
0 working plane> 12×18
1 surface is striated
2 stripes are bend into 2 directions to form one volume/ blurr distinctions between wall/ floor

BH-C 1.1
3D LEVEL 2

BH- E 1.3
GARDEN

PARTIAL VOLUME FOLD SURFACE STRIPS BEND

1 TRIANGULATED FOLD
0 working plane $=12 \times 18$
1 surface folded in triangulation
2 three interdependent planes within a triangular fold system, in hierarchy: first plane folded 1 edge/ 1 time, second two times, third three time

3 assembled: all downfold meet in (corner) points, no folded point is allowed to be placed within a surface

4 load-bearing spans planes, meets in 1 concentration point

CZ - A 1.1 DIFFERENT TRIANGULATION

TRIANGULATED FOLD SURFACE IN TRIANGLE

CZ-C 1.1 VOLUMETRIC TRIANGLE

CZ-C 1.2

CZ-C 1.3
> one surface folded in triangulation to form 1 continuous volume

CZ - D 1.1
EQUAL
TRIANGULATION

TRIANGULATED VOLUME FOLD
CZ - B 1.1
EQUAL TRIANGULATION

HB- A 1.1
PATTERN

HB- A 1.1
FOLD DEFORMED

HB- A 1.1 DEFORMED 2

PATTERN FOLD
DISTORTED RECTANGLE REPETITION

NK- A 1.1
PATTERN

NK- AB 1.1
PATTERN COUNTERPOINT

>1 complete plane is folded into triangular devisions

NK- C 1.1
PATTERN COUNTERPOINT

NK- F 1.1
MULTIPLE PATTERN FOLD

Level 1

Level 2

PATTERN FOLD

HR B 1.1
TOP

HR B 1.3
FRONT
> main surface is bend to form the slabs, structural fold, facade and footage; using decreasing mass

$>$ moving up

 HR B 1.2 SECTION

> steel staircase structure acts as a backpull to spring (3 levels): draws forces back to ground

STRUCTURAL FOLD 1 SURFACE BEND FORCES

1 BEND SURFACE
0 working plane> 12×18
1 basic surface is not a rectangular, but a directional plane (? degrees)

2 two components react upon/ support each other

3 both surfaces follow a proportion system within/ cut down to parts

4 all folds (first or second hierarchy) are instrumentalised; to form the structure, entrance platform, or interior furniture.

HR- G 1.1

HR- G 1.2

[^1]

[^0]: SYD04/01 (IN)FORMRESEARCH

[^1]: 1 TRIANGULAR FOLD
 0 working plane $=12 \times 18$ units
 1 three planes react upon/ support each other
 2 each plane is intuitively/ irregularly cut and folded to meet the next plane/ interaction

